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A B S T R A C T   

Accurate needle guidance is crucial for safe and effective clinical diagnosis and treatment procedures. Con-
ventional ultrasound (US)-guided needle insertion often encounters challenges in consistency and precisely 
visualizing the needle, necessitating the development of reliable methods to track the needle. As a powerful tool 
in image processing, deep learning has shown promise for enhancing needle visibility in US images, although its 
dependence on manual annotation or simulated data as ground truth can lead to potential bias or difficulties in 
generalizing to real US images. Photoacoustic (PA) imaging has demonstrated its capability for high-contrast 
needle visualization. In this study, we explore the potential of PA imaging as a reliable ground truth for deep 
learning network training without the need for expert annotation. Our network (UIU-Net), trained on ex vivo 
tissue image datasets, has shown remarkable precision in localizing needles within US images. The evaluation of 
needle segmentation performance extends across previously unseen ex vivo data and in vivo human data 
(collected from an open-source data repository). Specifically, for human data, the Modified Hausdorff Distance 
(MHD) value stands at approximately 3.73, and the targeting error value is around 2.03, indicating the strong 
similarity and small needle orientation deviation between the predicted needle and actual needle location. A key 
advantage of our method is its applicability beyond US images captured from specific imaging systems, extending 
to images from other US imaging systems.   

1. Introduction 

Needle insertion is a commonly used procedure in clinical diagnosis 
and therapy, offering a minimally invasive approach to access and treat 
various medical conditions [1–5]. Needle insertion is always used to 
obtain tissue samples for accurate diagnosis, guide the delivery of 
medications or fluids to specific targets, and perform therapeutic in-
terventions. In diagnosis, procedures such as fine-needle aspiration bi-
opsy (FNSB) and core needle biopsy rely on needle penetration to collect 
samples for pathological examination and determine the presence or 
nature of diseases [1,2]. Needle insertion is also employed in therapeutic 
treatments like injection, central venous catheter placements, and 
radiofrequency ablations, allowing for the precise delivery of medica-
tions, fluids, or radio waves. These procedures involve inserting a 

metallic needle into the body towards the target region, guided in 
real-time by various imaging modalities including ultrasound (US) im-
aging, X-ray computer tomography (CT), and magnetic resonance im-
aging (MRI). Among the available options, US imaging is the 
predominant choice for visualizing the needle and surrounding tissue to 
ensure safe procedures [3,6]. While the ultrasound-guided needle 
insertion process boasts several advantages such as real-time imaging 
capabilities, cost-effectiveness, non-invasiveness, and the absence of 
ionizing radiation, it does have certain limitations. US imaging can 
struggle with visualizing needle penetration into tissue due to 
depth-dependent attenuation and the inherent angular dependency. 
These factors restrict the transducer’s ability to fully record needle 
echoes, thereby reducing contrast [7]. If the needle is not adequately 
visualized, even experienced operators may encounter complications 
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such as nerve damage or organ injury [8]. This emphasizes the crucial 
role of proper needle guidance (through visualization or any other form 
of feedback) in mitigating potential risks associated with needle 
insertion. 

Efforts to enhance the US-assisted needle insertion process have led 
to several innovative improvements. One notable advancement involves 
surface modifications of the needles, achieved through methods like 
coating [9,10] and laser-etching [11]. These techniques can signifi-
cantly enhance the visibility of the needle in US images, as evident from 
the promising results reported in the literature. Nonetheless, these 
modifications often require specialized manufacturing processes, which 
can be resource intensive. In addition to physical modifications, signal 
and image-processing-based techniques have also been developed to 
improve needle visibility. These include methods like the Hough 
Transform [12,13], Gabor filtering [14], Random Sample Consensus 
(RANSAC) [15,16], and graph cut [17]. While these techniques have 
demonstrated potential, applying these techniques in real-time ultra-
sound scanning scenarios with inhomogeneous backgrounds can be 
challenging. Moreover, achieving a balance between computation time 
and accuracy using these methods can be complex. 

Over the past two decades, deep learning has emerged as a powerful 
tool for tackling a wide range of signal and image processing tasks, 
making it increasingly prevalent in the field of medical imaging. Con-
volutional Neural Network (CNN) based architectures are most exten-
sively employed to effectively address complex imaging challenges with 
robustness and efficiency. This has led to their application in enhancing 
needle visualization in ultrasound images by leveraging the power of 
data [18–22]. For instance, Zhao et al., have utilized the attention U-net 
to accurately localize needles within US images, achieving a precision 
rate of 96.25% [23]. Despite the impressive results achieved, deep 
learning-based methods suffer from the requirements of large datasets 
with precise needle annotations for effective training, which is chal-
lenging to obtain in practice. Simulated data, often used as a substitute, 
may not translate well to real clinical situations despite providing 
known needle locations [24]. Images from ex vivo or in vivo experi-
ments can also serve as training datasets, while the true needle locations 
remain elusive. Manual annotations by domain experts offer an alter-
native but can be labor-intensive and potentially introduce bias [25,26]. 
Therefore, accurate and automatic segmentation of the needle is 
necessary. 

Photoacoustic (PA) imaging, which combines optical illumination 
and acoustic detection, has gained increasing attention for its potential 
in preclinical and clinical applications [27–33]. PA imaging has the 
capability to image deep tissue with high spatio-temporal resolution and 
contrast, complementing US imaging [34–36]. Recent studies have uti-
lized dual US/PA imaging to offer mutually beneficial information. US 
imaging provides valuable insights into tissue structure and PA imaging 
identifies critical tissue and surgical devices like needles [37–39]. Unlike 
US imaging, which often provides poor image contrast and requires 
expertise to track the needle, PA imaging provides high-contrast needle 
visualization, due to the strong light absorption by the metallic needle. 
The exceptional capability of PA imaging in needle localization has 
spurred studies on needle detection and enhancement of needle visi-
bility in PA imaging through deep learning [39]. However, many 
existing PA systems are not yet suitable for clinical use due to factors 
such as the use of nonclinical US transducers and immobile system 
design [40]. Many dual-modal US+PA imaging systems are still in 
research mode without FDA clearance for real clinical use, although 
recently, a pre-market approval (PMA) from The Food and Drug 
Administration (FDA) was granted to an opto-acoustic ultrasound sys-
tem for diagnostic breast cancer imaging [41]. In addition, the use of 
high-energy class IV lasers inside the clinic adds another layer of safety 
concern and makes it even more challenging for clinical translation. 
Hence, commercially available clinical ultrasound imaging systems 
remain the preferred choice by clinicians for their day-to-day routine 
practices. Therefore, despite the challenges PA has [42], with its 

superior needle visualization capabilities, PA imaging can play an 
important role in precise needle localization under US-guided needle 
insertion procedures. 

In this study, the high-contrast needle visibility in PA images was 
used as ground truth (without the need for any domain expert to 
annotate the needle in the ultrasound images, as done in traditional 
methods) to train a deep learning neural network, UIU-Net, to augment 
the needle signal in US images. Ex vivo experiments were conducted by 
inserting a needle into chicken tissue at various depths and angles, while 
US and PA images were simultaneously stored using a clinical dual 
modal US+PA imaging system. The preprocessed PA images served as 
valuable ground truth for training the neural network, bypassing the 
need for expert annotation. The trained network was then applied to US 
images from an independent ex vivo experiment and an open-source in 
vivo human US image [43]. This method’s adaptability to US images 
(obtained with different imaging systems) makes it suitable for clinical 
use with a wide variety of existing clinical ultrasound systems. Although 
the method was demonstrated using specific US systems’ datasets, it 
possesses enough generalizability to be applied to US images from other 
imaging systems. This is the first time PA imaging is used as a training 
tool to augment needle visualization in US imaging (through deep 
learning). Therefore, without being in the clinic (yet) PA imaging can 
still be used to enhance and augment the clinical ultrasound imaging 
capabilities. 

2. Materials and methods 

2.1. Network implementation 

The implemented neural network, UIU-Net, was an extension of the 
U-Net architecture [44], designed specifically for image segmentation 
tasks, with its architecture shown in Fig. 1(a). Unlike traditional U-Nets, 
UIU-Net integrated a smaller U-Net into a larger U-Net backbone, 
enabling multi-level and multi-scale feature extraction. This architec-
ture improved object segmentation accuracy for small-sized objects and 
limited datasets. Additionally, UIU-Net incorporated two modules: the 
resolution-maintenance deep supervision (RM-DS) module and the 
interactive-cross attention (IC-A) module, which enhanced global and 
local context representation, respectively. In the RM-DS module, Re-
Sidual U-blocks (RSUs) were integrated into a deep network to maintain 
resolution. This approach improved the ability of the RSU-based U-Net 
to extract the object’s global features. The IC-A module, embedded in 
the RM-DS network, captured long-range dependencies between 
pixel-based objects by interactively cross-coding low-level details and 
high-level semantic features. It replaced the skip layer in U-Net. The 
final output of UIU-Net was the fusion of the multi-layer output from the 
RM-DS network. The encoder path of the backbone consisted of multiple 
scales, each containing a small U-Net with varying depth (represented as 
Nx). The small U-Net at each scale is shown in Fig. 1(b). A 2 × 2 max 
pooling layer followed each scale. In the last two scales, the small U-Net 
was replaced by a series of convolutions with different dilation rates 
[Fig. 1(c)]. The decoder path also followed a similar structure, with each 
scale (except the bottom two scales) containing a small U-Net followed 
by a transposed convolution layer with an up-sampling factor of 2. After 
each up-sampling, the interactive-cross attention module encoded the 
high-level and low-level features from the encoder path, capturing more 
context information from the decoder layer [Fig. 1(d-e)]. 

In the assessment of processing multiple US frames for dynamic 
needle tracking, the effectiveness of the UIU-Net was examined in 
relation to other widely used U-Net variants, namely conventional U-Net 
[45], Attention U-Net [46], and R2U-Net [47]. The conventional U-Net, 
originating as the foundational U-Net architecture, employs a symmetric 
encoder-decoder design that precisely extracts features while con-
straining the number of trainable parameters. Despite its success across 
diverse segmentation tasks, it may struggle with detecting fine details 
and distinguishing between closely located structures. Furthermore, 
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susceptibility to noise and artifacts can precipitate inaccuracies in seg-
mentation outcomes. Addressing these limitations, the Attention U-Net 
emerges as a formidable contender by incorporating attention gates, 
empowering the network to selectively focus on the target structures 
within the input images. However, this attention mechanism may not 
always capture all relevant contextual information, leaving the model 
susceptible to imprecision when exposed to noise or intricate structures. 
In contrast, the R2U-Net takes a distinct approach, introducing recurrent 
connections into the U-Net framework. This innovation significantly 
enhances the model’s capacity to leverage long-range contextual infor-
mation from the input image, further bolstering its segmentation capa-
bilities. In this study, the conventional U-Net, Attention U-Net, and 
R2U-Net were enlisted as reference models to assess and compare the 
performance of needle tracking in relation to the UIU-Net. 

All the examined networks, including UIU-Net and the three refer-
ence U-nets, were trained under the same setting, including input image 
size, learning rate, optimization algorithm, number of iterations, and 

batch size. The model training process employed input pairs with a 
resolution of 256 × 256 pixels. The networks were implemented in 
Python using Pytorch v1.2.0. For optimizing the networks, the Adam 
optimization algorithm decouple the weight decay (AdamW) was used. 
The learning rate was set to 0.001, and networks were trained on a 
Nvidia Tesla V100–32 GB GPU using the nodes of the Gekko cluster, 
High-Performance Computing Centre, Nanyang Technological Univer-
sity, Singapore. The UIU-Net employed a multi-binary cross-entropy 
(BCE) loss function, which is analogous to the one employed in the 
original implementation [44], and the loss function employed for the 
U-Net, Attention U-Net, and R2U-Net was the typical binary 
cross-entropy (BCE) loss. All networks were trained for 20000 iterations 
of training with a batch size of 2 and the model weights with the lowest 
validation loss were saved. 

Fig. 1. Network architecture for improving needle visibility in US imaging. (a) The backbone architecture of UIU-Net, (b) the architecture of small U-Net which is 
incorporated into the backbone, represented by lilac arrows in (a), (c) the architecture of small U-Net which is incorporated into the backbone in the last two scales, 
represented by light red arrows in (a), (d) detailed structure of IC-A module yielding cross channel feature FC-A, represented by skin-color boxes in (a), (e) detailed 
structure of IC-A module yielding interactive-cross spatial attention feature FIC-A, represented by light blue boxes in (a). 
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2.2. Imaging system description 

To obtain the training data sets, both US images and the corre-
sponding PA images (which act as the ground truth, without any manual 
expert annotation needed), a dual-modal US+PA imaging system was 
used. As shown in Fig. 2(a), the imaging system utilized a frequency- 
doubled nanosecond pulsed Nd:YAG pump laser (Continuum, Surelite 
Ex) to generate laser pulses with a pulse repetition frequency of 10 Hz 
and a pulse width of 5 ns. The laser pulses passed through a dichroic 
mirror (HBSY12, Thorlabs), resulting in a 1064-nm beam reflection and 
a 532-nm beam transmission. The transmitted 532-nm light was 
directed toward the beam dump (LB2/M, Thorlabs). The reflected 1064- 
nm light beam was split by a glass slide into two beams, with one beam 
used as a trigger for the clinical research US system (ECUBE 12 R, 
Alpinion, South Korea) by passing through a photodiode, and the other 
directed to an optical filter designed to remove light with unwanted 
wavelengths. After passing through the filter, the light beam was 
coupled and transmitted to the bifurcated optical fiber bundle (Ceram-
optec CmbH, Germany). The fiber bundle was composed of 1600 optical 
fibers, each with a core diameter of 185 µm and a numerical aperture of 
0.22. The fibers were bifurcated at the center to evenly spread over two 
rectangular regions with the size of 4 cm × 0.1 cm. The resulting two 
rectangular fiber bundles, and the L3–12 linear array ultrasound trans-
ducer of the clinical US system, were assembled into a handheld probe 
holder (made using a Dremel 3D20 3D printer). Through Monte Carlo 
simulations, various probe holder parameters were optimized for the 
imaging process, considering light delivery and needle visualization by 

PA imaging [48]. The illumination angle of the light for this holder was 
15 degrees. Considering that the total illumination area from both ends 
was around 3 cm2, the fiber bundle’s 25% coupling and transmission 
efficiency, and the energy per pulse was ~100 mJ, the fluence on the 
sample surface was calculated to be approximately 8.3 mJ/cm2. This 
value was well below the safety limit established by the American Na-
tional Standards Institute (ANSI) [49]. 

The US and PA imaging data were acquired using the clinical 
research US system. This system could perform US and PA imaging 
either separately or simultaneously in dual mode, and save three types of 
data, including raw radio frequency (RF) data for each channel, beam-
formed data, and IQ data. For this study, we exclusively employed the 
dual mode (research mode) and acquired only the beamformed data. 
The system utilized a 128-element linear array transducer with a width 
of each element of 0.03 cm, a center frequency of 8 MHz and a 95% 
fraction bandwidth. In dual mode, 128 transmission channels and 64 
receive channels were configured. The system employed 64 parallel data 
acquisition hardware to collect data per laser pulse. As a result, to store 
data from all 128 channels and generate a complete PA image, two laser 
pulses were necessary. This resulted in a frame rate of 5 frames per 
second for the imaging system, despite the laser operating at 10 Hz. 
Various parameters were specified using Python code, such as imaging 
depth and number of frames to save. The imaging depth and sound speed 
was set to 2 cm and 1540 m/s, respectively, and the maximum number 
of frames to save at a time was set to 500. This setting allowed for 
recording up to 100 s of the scanning at one go. 

Fig. 2. Imaging system descriptions and representative US/PA images. (a) Imaging systems used to capture both US and PA images. Inset: photograph of the 
handheld probe combining optical fiber, US transducer, and the holder, OF optical fiber. (b) Representative US images during needle insertion, where yellow arrows 
mark the needle position. (c) Representative PA images during needle insertion. (d) Preprocessed PA images which served as ground truth for network training. (b-d) 
Have same scale bar as shown in one of the figures. 
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2.3. Acquisition of ex vivo image 

Both US and PA data were acquired during needle insertions into ex 
vivo chicken tissue. The experiments were conducted under two con-
ditions, one with a water tank and another with an ultrasound gel 
applied to the transducer for better ultrasound coupling, as depicted in 
Fig. 2(a). We continuously recorded the insertion of a 1.2 mm × 38 mm 
18 G needle (BD PrecisionGlide Needle, Franklin Lakes, NJ, USA) into 
the chicken tissue at various angles and depth of insertion [with the 
needle being inserted parallel to the longer side of the ultrasound 
transducer (In-plane)]. As the imaging system (in research mode) allows 
users to save beamformed US and PA data, we did not do any specific 
reconstruction on our own. We only read the beamformed data in 
MATLAB and use it for further network training purposes. To obtain the 
US images from beamformed data, first quadratic demodulation was 
done, which involved multiplying each captured modulated signal with 
a reference signal of fixed frequency, synchronized with the carrier 
frequency of the modulated signal. Following this, a low-pass filter was 
applied, and envelop signals were obtained. Given the wide dynamic 
range of amplitudes inherent in US signals, log compression was 
employed to narrow the dynamic range. 

Three representative US images are shown in Fig. 2(b), where images 
at different time points during the needle insertion are shown in 
different rows. The corresponding PA images, obtained from the 
beamformed data via the Hilbert transform, are displayed in Fig. 2(c). 
Although the high background US signal from surrounding tissue made 
it difficult to observe the needle or track its trajectory in the US images 
[marked with yellow arrows in Fig. 2(b)], the needle is clearly visible 
with very high contrast in PA images [Fig. 2(c)]. This is possible due to 
the strong optical absorption (and PA images provide optical absorption 
contrast) of the needle compared to the background tissue, producing 
strong PA signals from the needle. However, some laser absorption ar-
tifacts from surrounding chromophores are also present in the PA im-
ages, although not significantly affecting the needle visualization. To 
optimize the neural network training by feeding higher-contrast PA 
images, several pre-processing steps were performed, including thresh-
olding, binarization, connected component labeling, and selecting the 
large area of the connected regions. The preprocessing process was 
automated for all acquired PA images, resulting in the generation of 
binary PA maps, as illustrated in Fig. 2(d). The US images and binary PA 
maps, corresponding to a field-of-view of 3.81 (lateral) x 1.89 (axial) cm, 
were used for the network training, with the PA images serving as 
ground truth. Detailed videos (s1, s2, and s3) demonstrating needle 
insertion in US imaging, PA imaging, and preprocessed PA imaging are 
available in the supplementary materials. Approximately 2600 US 
frames and corresponding PA frames, captured from 11 experiments, 
were divided in the ratio of 80:10:10 into training, validation, and test 
datasets, respectively, for the training of the neural network. In clinical 
scenarios, a wide range of needles with different lengths and gauges 
(diameters) are available. To ensure the proposed network’s feasibility 
in clinical situations, it must have the capability to generalize across 
different needle diameters. Therefore, we also performed similar ex-
periments and collected data from 23 G needles (BD PrecisionGlide 
Needle, Franklin Lakes, NJ, USA) to test the performance of the network. 
Here, we employed identical experimental setups and acquisition set-
tings, while using a new chicken tissue sample. 

2.4. Evaluation of in vivo image 

In vivo needle insertions into the human body were sourced from an 
open-source data repository, which offered US images and clips illus-
trating needle insertion into various areas such as the breast and axilla, 
kidney, salivary gland, and parotid gland [43]. The US images featuring 
in-plane placements with a single needle were considered, and the 
needle locations have been indicated by the author. Based on the an-
notated needle location, lines which connected the needle tip and the 

needle base served as needle segmentation maps (labels) for subsequent 
comparison. These in vivo images, acquired from Fujifilm Ultrasound, 
were applied to the trained network for automatic needle localization, 
and the results were compared with the manual segmentation map. By 
generalizing the model for in vivo US images, the network’s feasibility 
for clinical application can be assessed. 

2.5. Evaluation metrics 

As noted in prior literature, traditional deep learning evaluation 
concentrated on pixel-wise segmentation accuracy, which may disre-
gard some biologically relevant instances [50]. In this study, we 
employed a modified Hausdorff distance (MHD) that was derived from 
the Hausdorff distance and quantified the similarity between two sets of 
edge maps related to the objects under consideration. Due to its 
enhanced discriminatory capability and robustness to outliers, it was 
superior to other distance measures for the purpose of object matching. 
Considering two sets of points A = {a1, a2,…, aNumA} and B = {b1, b2,… 
, bNumB} of the desired objects from two different images, the distance 
between a point from A and B was defined as d(a,B) = minb∈B‖a − b‖. 
Thus, the distance between two points sets A and B con be defined as 

MHD = max(d(A,B), d(B,A) )

= max

(
1

NumA

∑

a∈A
d(a,B),

1
NumB

∑

b∈B
d(b,A)

)

MHD was defined in pixel units, considering the consistent pixel size 
of the images utilized in this research. 

In addition, two validation metrics called needle localization success 
rate (NLSR) and targeting error (TE) were employed to assess the ability 
of the proposed algorithm to localize needles [51,52]. NLSR quantifies 
the percentage of images where the localization result accurately iden-
tifies the needle. A successful localization is needed to fulfill the 
following requirements: 1) the line determined by the localization step is 
required to pass through the ground truth, and 2) the measured seg-
mentation outcome should be in close agreement with the ground truth 
segmentation. The set of needle pixels from ground truth was denoted as 
SG, while the set of needle pixels predicted by the network was denoted 
as SH. To ensure the above criteria are met, the intersection of SG and SH 
should exceed a specified threshold. 

TE can be considered a clinically pertinent measure related to tar-
geting specific structures, and its value is strongly influenced by orien-
tation errors. TE was defined as 

TE =
⃒
⃒dtrue − dsegmentation

⃒
⃒

where, dtrue represents the minimum distance between the actual needle 
line and the central pixel of the image, while dsegmentation refers to the 
minimum distance between the estimated needle line and the image’s 
central pixel. To avoid distortion of TE statistics due to significant 
inaccuracies in localization, TE was calculated exclusively using suc-
cessful outcomes. 

In addition to needle orientation error, the needle length ratio was 
also computed by dividing the predicted needle length by the actual 
needle length. The ratio was defined as 

Needle length ratio =
Predicted needle length

Actual needle length 

The needle length was determined using the 2D Euclidean distance 
between the needle tip and the base of the needle shape in the image, 
providing a more complete assessment of the network’s performance in 
detecting needles. When the needle length ratio approaches closer to 1, 
it signifies a higher degree of completeness in the needle prediction. It 
should be noted that only successful localization will be further calcu-
lated MHD, TE, and needle length ratio. 
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3. Results 

3.1. Deep neural network training, validation, and testing 

To showcase the effectiveness of needle enhancement in US images, 
the trained network was applied to US images not utilized in training or 
validation. Fig. 3(a) presents three representative test US images, while 
the corresponding overlaid US with PA image (which acts as the ground 
truths) are shown in Fig. 3(b). The ground truth here served only as 
reference images for subsequent quantitative assessment. Different 
network predictions are shown in Fig. 3(c-f). This side-by-side com-
parison revealed that the needle can be detected by the trained U-Net or 
its extension network, although segmentation performance varied. 
There was no significant difference in the needles predicted by the 
traditional U-Net, Attention U-Net, and R2U-Net. Using the three net-
works, the needles can be identified in the US images, but not the entire 
needle was detected. These networks tended to accurately localize the 
needle tip rather than the needle root, which has been marked by yellow 
arrows [in Fig. 3(c-e)]. However, compared with these U-Net variants, 
UIU-Net [Fig. 3(f)] outperformed by precisely localizing the entire 
needle despite some discontinuity present in the prediction result as 
marked by a yellow arrow. 

Table 1 shows the quantitative results of the performance of all these 
different networks on the test data set. Using the average value of each 
metric across test images as an indicator of overall performance, all 
employed networks demonstrate 100% confidence, as shown by NLSR 
value, in localizing the needle. The mean MHD values for traditional U- 
Net, Attention U-Net, and R2U-Net all fell within the range of 2.86–3.27. 
Slightly contrasting this, the UIU-Net model achieved a lower mean 
MHD value of 1.90. Notably, the standard deviations associated with the 
MHD values of the three reference networks exceed 3.99, significantly 
higher than that of UIU-Net (1.10). This not only underscores the stable 
performance of UIU-Net but also indicates that the other three networks 
sometimes generated needle maps that diverged significantly from the 
actual needle map. This divergence is primarily attributed to the fact 
that predicted needle maps from the reference networks often omit parts 
of the needle, as visibly observed in Fig. 3(c-e). Furthermore, the mean 

targeting errors between the actual needle and the predicted needle 
from the four examined networks did not display significant disparities. 
The largest variation among the mean targeting errors for these net-
works did not surpass a margin of 1. This implies that despite the 
incompleteness of predictions made by the reference networks, all four 
networks predicted needles with similar orientations. The incomplete-
ness in the predictions made by the reference networks was further 
underscored by the needle length ratio. The mean needle length ratio 
obtained from UIU-Net was 92.99%, significantly higher than the ratios 
obtained from the other examined networks, all of which fell below 
87%. Also, the standard deviation of the needle length ratio produced by 
UIU-Net was 9.27%, distinctly outperforming the other networks, each 
of which exceeded 13%. This outcome further substantiates the superior 
needle localization performance of UIU-Net, as it consistently detects 
nearly the entire length of the needle. 

3.2. Enhanced needle visibility on unseen ex vivo tissue US images 

To verify the network’s robustness on previously unseen data, an 
additional experiment involving the insertion of an 18 G needle was 
conducted. The US images captured from the needle insertion procedure 
were fed into the network to assess its performance without relying on 

Fig. 3. Representative images from the test dataset with needle insertions into chicken tissue. (a) conventional US images, (b) overlaid US image with preprocessed 
PA (served as ground truth), (c) overlaid US image with the prediction from traditional U-Net, (d) overlaid US image with the prediction from Attention U-Net, (e) 
overlaid US image with the prediction from R2U-Net, (f) overlaid US image with the prediction from UIU-Net. All figures have same scale bar, as shown in (a). 

Table 1 
Quantitative assessment of the needle segmentation in prediction results. The 
metrics (MHD, targeting error, and needle length ratio), expressed as mean 
± standard deviations, were taken from test sets.   

NLSR MHD Targeting 
error 

Needle length 
ratio 

Prediction from 
traditional U- 
Net  

100% 3.17 
± 4.59 

2.92 ± 3.01 86.37% 
± 14.37% 

Prediction from 
Attention-Net  

100% 3.27 
± 4.72 

3.39 ± 3.55 84.36% 
± 15.22% 

Prediction from 
R2U-Net  

100% 2.86 
± 3.99 

3.70 ± 4.24 85.12% 
± 13.89% 

Prediction from 
UIU-Net  

100% 1.90 
± 1.10 

3.57 ± 6.59 92.99% ± 9.27%  
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ground truth annotations. A representative of the captured US image is 
depicted in Fig. 4(a). Correspondingly, the overlaid US/PA image is 
shown in Fig. 4(b). Overlaid US images with predicted needle generated 
by the employed U-Net architectures are shown in Fig. 4(c-f). 

The traditional U-Net, Attention U-Net, and R2U-Net models 
appeared to exhibit comparatively reduced effectiveness in accurately 
detecting needles, in contrast to the UIU-Net model [Fig. 4(f)]. Instances 
of needle misidentification were evident in the traditional U-Net’s pre-
dictions, particularly at image boundaries, marked by blue arrows in 
Fig. 4(c). R2U-Net displayed similar instances of needle misidentifica-
tion, both at image boundaries and within bright regions within the 
image, as denoted by the blue arrow in Fig. 4(e). In addition to 
misidentification, the structural integrity of the needles remained 
inadequately preserved in the predictions from the three reference 
networks, most notably in the U-Net’s outcomes where needles were 
completely missed. This was marked by yellow arrows in Fig. 4(c-e), 
indicating the needles that went undetected by the network. Although 
both the Attention U-Net and R2U-Net demonstrated slightly better 
performance compared to U-Net, they still exhibited susceptibility to 
ignoring the needles, capturing only a limited portion of their structure. 
Conversely, the outcomes generated by the UIU-Net showcased its 
adeptness in precisely identifying needle locations while offering 
comprehensive segmentation of the needle structures [Fig. 4(f)]. Sup-
plementary Material S4 depicted the process of needle insertion in US 
images, while S5 showed the improved visibility of needles in US images 
achieved through the application of UIU-Net. 

In the previous evaluation of the test dataset, UIU-Net’s needle 
localization capability did not exhibit a substantial improvement 
compared to the reference networks. However, as shown in Table 2, the 
quantitative results presented for this new, previously unseen dataset 
suggest that the reference networks’ ability to generalize was not as 
strong as that of UIU-Net, as they failed to effectively detect the needles 
in this unfamiliar dataset. Among the four U-Nets, convention U-Net 
displayed the worst evaluation metric values, which was consistent with 
the observations in Fig. 4. This was followed by Attention U-Net and 
R2U-Net, both of which showed worse quantitative measurements 
compared with UIU-Net. Specifically, U-Net’s NLSR value was notably 
low at approximately 93.55%, indicating its limited ability to robustly 
track needles, with around 6% of needles remaining undetected. A 
higher NLSR can be achieved by using Attention U-Net and R2U-Net 
(94.76% and 94.96%, respectively), but they still displayed a tendency 
to miss needles in some US images. In contrast, UIU-Net achieved NLSR 
value of about 99.80%, a visible improvement over the reference 
models, with only 0.2% of needles being missed. 

For the assessment of network performance in terms of proximity to 
the actual needle, needle orientation accuracy, and needle length ac-
curacy, we calculated the MHD, targeting error, and needle length ratio 
using only prediction results that successfully detected the needle. The 
mean MHD value for UIU-Net (~0.79) was greatly lower than that of the 
other U-Nets (over 4), representing a more than fivefold decrease. In 
addition, UIU-Net’s mean targeting error was less than 3.5, a substantial 
improvement compared to the reference models where values exceeded 

14. The pronounced needle orientation errors evident in the reference 
models not only highlight a marked disparity between the predicted and 
actual needle orientations but also signify that these networks can only 
detect a limited portion of the needles, highlighting a notable incom-
pleteness in needle segmentation. The inability of the reference U-Nets 
to preserve needle structural integrity is further reflected by the needle 
length ratio. UIU-Net’s mean needle length ratio demonstrated a marked 
advantage over the reference models, with an approximate 95.37% 
ratio, in contrast to the considerably lower ratios, all < 80%, associated 
with the reference models. This discrepancy emphasizes UIU-Net’s su-
perior capability in preserving needle integrity. Furthermore, the 
consistent and stable performance of UIU-Net in needle localization was 
evident through the relatively small standard deviation observed across 
all metrics evaluated for the results generated by UIU-Net. 

3.3. Enhanced visibility of needles with varying diameters 

In clinical applications, it is common to employ needles with 
different diameters. To assess the applicability of the networks for such 
clinical scenarios, an additional experiment involving the insertion of a 
23 G needle was carried out. Crucially, the data generated from this 
experiment was excluded from the network’s training dataset. Thus, this 
data can also be considered “unseen” by the network. In Fig. 5(a), a 
representative US image captured during the experiment is displayed, 
while Fig. 5(b) presents the corresponding overlaid image combining 
the US and PA images. Further insights can be gleaned from Fig. 5(c-h), 
which exhibit overlaid US images with predicted needle generated by 
various network models. 

As illustrated in Fig. 5(c-h), traditional U-Net, Attention U-Net, and 
R2U-Net showed suboptimal performance in the task of needle detec-
tion. While these three U-Nets could localize the needles, they struggled 
to segment the complete needle, often missing either the needle tip or 
root, as indicated by the yellow arrows. R2U-Net, in particular, over-
looked a substantial portion of the needles. Additionally, they frequently 
misclassified surrounding tissue as a needle, marked by blue arrows [in 

Fig. 4. Representative images from a separate experiment (unseen data) with 18 G needle insertions into chicken tissue. (a) conventional US images, (b) overlaid US 
image with preprocessed PA (served as ground truth for comparison), (c) overlaid US image with the prediction from traditional U-Net, (d) overlaid US image with 
the prediction from Attention U-Net, (e) overlaid US image with the prediction from R2U-Net, (f) overlaid US image with the prediction from UIU-Net. All figures 
have same scale bar, as shown in (a). 

Table 2 
Quantitative assessment of the needle segmentation in prediction results. The 
metrics (MHD, targeting error, and needle length ratio), expressed as mean 
± standard deviations, were taken from a separate experiment with 18 G needle 
insertions into chicken tissue.   

NLSR MHD Targeting 
error 

Needle length 
ratio 

Prediction from 
traditional U- 
Net  

93.55% 8.29 
± 8.73 

20.59 
± 16.53 

66.09% 
± 25.03% 

Prediction from 
Attention-Net  

94.76% 6.33 
± 8.83 

17.35 
± 17.08 

70.18% 
± 23.08% 

Prediction from 
R2U-Net  

94.96% 4.13 
± 6.58 

13.44 
± 13.86 

79.19% 
± 19.72% 

Prediction from 
UIU-Net  

99.80% 0.79 
± 1.77 

3.21 ± 5.29 95.37% 
± 12.13%  
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Fig. 5(c-e)]. In the case of the U-Net, it even exhibited inaccuracies in 
delineating the image boundaries as part of the needle. In contrast, UIU- 
Net effectively segmented a more comprehensive needle while accu-
rately differentiating between needle-like tissue and the actual needle, 
demonstrating superior performance in needle detection tasks. 

Table 3 presents the quantitative results of different networks. 
Although the NLSR for all four networks were the same, with a value of 
100%, the MHD value, targeting error, and needle length ratio varied 
among them. R2U-Net exhibited a mean MHD value above 22, whereas 
both traditional U-Net and Attention U-Net had mean MHD values 
around 7. These values were notably higher than that of UIU-Net, which 
showed a mean MHD value of around 2.2. The comparatively larger 
mean MHD value and standard deviation observed in the reference 
networks highlight a more significant deviation between the actual 
needle map and the predicted needle map when compared to UIU-Net. 
The mean targeting error for all assessed networks ranged between 
1.79 and 3.30, with U-Net showing the lowest values and R2U-Net the 
highest. Although UIU-Net did not achieve the lowest mean targeting 
error, the difference from other networks was slight. In addition, the 
needle length ratio of UIU-Net demonstrated a value of around 95%, 
much closer to 1 than that of the other networks (all lower than 86%). 
Particularly striking was the remarkably low needle length ratio of 
44.65% generated by R2U-Net, aligning with the observed needle 
detection shortcomings in Fig. 5(e). 

3.4. Application of the UIU-Net on the in vivo US images 

In the preceding sections, UIU-Net not only demonstrated remark-
able efficacy in identifying needles within ex vivo datasets but also 
showcased its robustness in extending its needle localization capability 
to datasets it had not encountered before. A subsequent evaluation was 
conducted using UIU-Net on an in vivo human imaging dataset to further 
validate its reliability and potential utility in clinical settings. The 
trained model was applied to images obtained from an open-source re-
pository depicting needle insertions into the human body. In Fig. 6(a), 

conventional US images are presented, while Fig. 6(b) display overlaid 
US images and ground truth (manual segmentation to evaluate the 
performance of the UIU-Net). Overlaid US images and predictions from 
UIU-Net are shown in Fig. 6(c). 

As illustrated in Fig. 6, UIU-Net displayed outstanding effectiveness 
in improving needle visibility, reliably detecting nearly the entire length 
of the needle, although a slight missing of the needle tip was observed. 
This phenomenon can be attributed to the relatively sharper nature of 
the needle tip in the in vivo US images, a feature not well-represented in 
the ex vivo dataset. Furthermore, in vivo images were not utilized for 
training the network, thus there might not be enough data in the training 
dataset that represented this feature, affecting the ability of the UIU-Net 
to detect the sharp needle tip for the in vivo cases. Despite the minor tip 
absence, the remaining portion of the needle was well segmented, even 
when the needle displayed non-linear features within the image. While 
needles in ex vivo images typically displayed a linear appearance, in 
vivo human US images sometimes displayed needles with potential non- 
linearities, denoted by the green box [Fig. 6(b)]. Remarkably, UIU-Net 
adeptly accommodated this complexity and accurately delineated the 
presence of the needle. Additionally, during needle insertion into the 
human body, the interaction between US waves and the needle could 
lead to the generation of multiple echoes, manifesting as parallel lines in 
the US image, as pointed out by the blue arrow in the second row of 
images. However, UIU-Net maintained its resilience and effectively 
predicted the actual needle while excluding other needle-like features 
present in the image. Table 4. 

As shown in Fig. 6(c), the prediction results from UIU-Net robustly 
outlined the needle with different insertion depths and angles, despite 
some discontinuity as indicated by yellow arrows. Importantly, these 
discontinuities did not significantly compromise the precision of needle 
identification, a fact supported by quantitative results. The mean MHD 
value and targeting error were recorded at approximately 3.73 and 2.03, 
respectively. These values denoted a robust alignment between the 
predicted and actual needle maps, facilitated by the minimal proximity 
and orientation discrepancy between the two maps. Furthermore, the 
needle length ratio approximated 83.55%, illustrating UIU-Net’s ca-
pacity to predict 83.55% of the needle length even in previously unen-
countered human datasets from completely different clinical US imaging 
system data. 

An additional assessment of the inference time for the UIU-Net was 
conducted, considering both ex vivo and in vivo images. The result 
showed that the average inference time for an ex vivo image with the 
RTX A5500 GPU (10,240 tensor cores) was 14.4 ms (71 frames/second), 
while the average inference time for an in vivo image with the RTX 
A5500 GPU was 37 ms (27 frames/second). The inference times can be 
further reduced by employing techniques such as data parallelism and 
model parallelism as well as higher-end GPUs. 

4. Discussion 

Accurate needle guidance is crucial for safe and effective clinical 

Fig. 5. Representative images from a separate experiment (unseen data) with 23 G needle insertions into chicken tissue. (a) conventional US images, (b) overlaid US 
image with preprocessed PA (served as ground truth for comparison), (c) overlaid US image with the prediction from traditional U-Net, (d) overlaid US image with 
the prediction from Attention U-Net, (e) overlaid US image with the prediction from R2U-Net, (f) overlaid US image with the prediction from UIU-Net. All figures 
have same scale bar, as shown in (a). 

Table 3 
Quantitative assessment of the needle segmentation in prediction results. The 
metrics (MHD, targeting error, and needle length ratio), expressed as mean 
± standard deviations, were taken from a separate experiment with 23 G needle 
insertions into chicken tissue.   

NLSR MHD Targeting 
error 

Needle length 
ratio 

Prediction from 
traditional U- 
Net  

100% 7.12 ± 3.30 1.79 ± 1.10 78.17% 
± 10.08% 

Prediction from 
Attention-Net  

100% 6.44 ± 4.62 2.40 ± 0.54 85.43% 
± 12.12% 

Prediction from 
R2U-Net  

100% 22.20 
± 5.39 

3.30 ± 2.32 44.65% 
± 16.89% 

Prediction from 
UIU-Net  

100% 2.20 ± 0.65 2.74 ± 0.62 95.25% 
± 14.73%  
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diagnosis and treatment procedures. US-guided needle insertion often 
encounters challenges in consistency and precise visualization of the 
needle. Moreover, the operator’s dependency on US imaging makes it 
vulnerable to a shortage of skilled and experienced ultra-sonographers, 
especially in resource-crunch rural areas. Therefore, a self-learned 
Artificial Intelligence (AI)-assisted US scanner with the ability to visu-
alize the needle-tracking precisely will substantially improve the accu-
racy and safety of needle-based procedures. Moreover, these 
developments will help to have auto-navigating (in conjunction with 
robotic arms) US-guided needle tracking in the future, potentially 
eliminating the need for a skilled and experienced ultra-sonographer. 
Nonetheless, the performance of AI networks is highly dependent on 
the training data and the ground truth. While the concept of a self- 
learning AI-assisted ultrasound (US) scanner offers the promise of 
reducing the necessity for manual annotation, it’s noteworthy that 
manual annotation often remains a requisite component when training 

the AI network [25,26,53]. Although certain studies have endeavored to 
mitigate this challenge by employing simulation datasets, the ability to 
generalize simulation data to real-world clinical scenarios continues to 
pose a significant challenge [24]. 

The proposed technology is the first application of PA imaging to 
serve as deep learning ground truth for US imaging. While PA imaging 
has emerged as a technique capable of providing high-contrast visuali-
zation of needles, the translation of PA to clinics is challenging for 
various reasons. However, with this approach, PA imaging still can play 
a role, even without being inside the clinic. Training the DL algorithm 
with PA images eliminates manual annotations by experts. Therefore, 
reliability and consistency in the ground truth improve. Using a reliable 
ground truth will help the algorithm to be trained better. The developed 
network, UIU-Net, along with three other reference U-Nets, was initially 
trained on ex vivo image datasets and subsequently evaluated on mul-
tiple datasets, including a test dataset, two previously unseen ex vivo 
datasets, and an in vivo human dataset. While UIU-Net and the reference 
networks exhibited comparable performance on the test dataset, it 
became evident that the reference networks struggled to maintain pre-
cise needle localization when faced with previously unseen datasets. In 
contrast, UIU-Net consistently demonstrated outstanding performance 
in accurately localizing needles within US images, showcasing its robust 
generalization capabilities. Specifically, the MHD value and targeting 
error value in human data stand at about 3.73 and 2.03. These values 
serve as crucial metrics - MHD measures the proximity between the 

Fig. 6. Representative images with needle insertions into the human body. (a) conventional US images, (b) overlaid US image with ground truth (manual label 
shown in green), (c) overlaid US image with prediction from UIU-Net. 

Table 4 
Quantitative assessment of the needle segmentation in prediction results. The 
metrics (MHD, targeting error, and needle length ratio), expressed as mean 
± standard deviations, were taken from in vivo human datasets.   

NLSR MHD Targeting error Needle length ratio 

Prediction from 
UIU-Net  

100% 3.73 ± 4.76 2.03 ± 2.21 83.55% ± 13.48%  
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predicted and actual needle maps, while the targeting error metric as-
sesses the accuracy of needle orientation. Furthermore, the needle’s 
structural integrity finds assurance through the utilization of the UIU- 
Net architecture. This assertion is supported by the needle length 
ratio, which closely approaches unity, indicating the model’s profi-
ciency in preserving the needle’s complete form. 

The proposed algorithm not only performed well on needle identi-
fication but also showed good generalization capability on unseen US 
images. Even within in vivo human images captured by different sys-
tems, UIU-Net still showed impressive needle segmentation results. It 
suggests that the developed algorithm holds promise to be easily applied 
to needle-tracking procedures performed by any other ultrasound ma-
chine, making the proposed idea truly system-independent. Using this 
novel approach to enhance US imaging with PA imaging can impact 
several clinical procedures where accurate needle location needs to be 
visualized. The unique combination of AI tools and, in the future, AI- 
driven robotic scanning will significantly impact the standard-of-care 
in hospitals [54]. AI-driven US-guided needle tracking can reduce 
operator dependence, increase accuracy in needle target position, ach-
ieve faster target localization (reduce workflow duration), and improve 
patient comfort. 

Our current work is only the start of this journey. There are some 
limitations and further improvements will be needed. The frame rate of 
our US system is intrinsically tied to the laser repetition rate. To elevate 
the frame rate, there are two potential solutions: employing a higher 
repetition rate laser or reducing the imaging area by employing just 64 
data-acquisition channels. In a previous demonstration, this system 
achieved up to 7000 frames per second for PA imaging [55]. A sub-
stantial increase in frame rate holds promising prospects, as it could 
facilitate the creation of a larger image database, thereby contributing to 
more effective AI training. In addition, the success of the PA ground 
truth approach heavily relies on the availability of high-quality PA im-
aging data. A better approach can be further developed to ensure the 
needle integrity and total removal of artifacts in PA images. To use a US 
imaging platform for PA imaging, several probe holders were proposed 
to integrate the light delivery with the US probe. Among the various 
holder options considered, we chose the holder with 15 degrees of light 
delivery to achieve high-quality PA images. Limited by the practical 
challenges of the fiber bundle, holders with light delivery angles 
exceeding 15 degrees have not been fabricated yet [48]. In future in-
vestigations, it is essential to broaden the scope by developing holders 
with a wider range of illumination angles to thoroughly assess the 
optimal angle that yields the highest PA image quality. Besides, a more 
effective signal processing-based method can be proposed for elimi-
nating artifacts from the PA images. Furthermore, considering the wide 
range of needle sizes used in clinical applications for different proced-
ures, it is better to incorporate needles of all available diameters in the 
network evaluation. This comprehensive approach ensures a more 
robust demonstration of the superior performance of the proposed 
method. 

5. Conclusion 

In this work, we introduced a deep learning approach for precise 
needle tracking in US procedures, utilizing photoacoustic images as the 
ground truth. Our innovative photoacoustic-driven deep learning model 
was developed using ex vivo data, eliminating the need for expert 
annotation and reducing the workload and potential for subjective bias. 
The model performance was assessed on previously unexamined ex vivo 
tissue data and in vivo human data, exhibiting significantly enhanced 
needle visualization. The method demonstrated excellent generaliz-
ability for tracking needles of varying gauges. Consequently, this deep 
learning-based approach has the potential to improve minimally inva-
sive procedures that involve percutaneous needle insertions by accu-
rately identifying the needle location. 
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