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A compact quadriwave lateral shearing interferometer (QWLSI) with strong adaptability and high precision is pro-
posed based on a novel randomly encoded hybrid grating (REHG). By performing the inverse Fourier transform of
the desired +1 Fraunhofer diffraction orders, the amplitude and phase distributions of the ideally calculated quad-
riwave grating can be obtained. Then a phase chessboard is introduced to generate the same phase distribution,
while the amplitude distribution can be achieved using the randomly encoding method by quantizing the radiant
flux on the ideal quadriwave grating. As the Faunhofer diffraction of the REHG only contains the +1 orders, no order
selection mask is ever needed for the REHG-LSI. The simulations and the experiments show that the REHG-LSI
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exhibits strong adaptability, nice repeatability, and high precision.
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Compared to conventional interferometers like Fizeau
and Twyman-Green interferometers, multilateral shear-
ing interferometers (multi-LSIs) are compact and stable.
Moreover, thanks to the common-path configuration,
multi-LSIs can be applied to the transient wavefront test-
ing or the aberration measurement of highly precise pro-
jection optics for very large scale integration (VLSI) [1,2].
Commonly used multi-LSIs include the cross-grating
lateral shearing interferometer (CGLSI) [3], the three-
wave lateral shearing interferometer (TWLSI) [4], and the
quadriwave lateral shearing interferometer (QWLSI)
based on the modified Hartmann mask (MHM) [5]. The
CGLSI consists of a cross-grating and an order selection
mask to select the 1 orders for lateral shearing interfer-
ence, and their fabrication is relatively simple. It can
be employed to test the wavefront of convergent beams
directly and the wavefront of collimated beams with an
aplanatic lens [6]. However, in order to reduce the system
error, the cross-grating needs to be as close as possible
to the order selection mask, which makes it difficult to
adjust the position of each component. Besides, as the
distance between order selection windows precisely cor-
responds to the focal length of the wavefront under test,
the order selection mask actually limits the testing range
of the CGLSI. The MHM introduces a phase chessboard
on the basis of a cross-grating, and the even orders and
the multiples of 3 orders are then eliminated. The diffrac-
tion efficiency of the £1 orders is better, but the +5 and
47 orders also remain in the diffractions. If there is no
order selection mask employed to help selecting the +1
orders, the wavefront will be measured in the approach
regarding the MHM as a Hartmann sensor only at the
Talbot distance [7]. And the resolution is also limited
compared to conventional interferometers. According
to the derivation by Chanteloup and Cohen [§], the ideal
QWLSI, which contains only 4 beams in two orthogonal
directions, can be realized by combining a phase chess-
board with an amplitude grating whose transmittance
distribution is the absolute value of cosine function.
However, this grating is difficult to be made, as the same
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variation of intensity cannot be easily obtained by gen-
eral grating fabrication methods.

In this Letter, a QWLSI with strong adaptability and
high precision based on a randomly encoded hybrid gra-
ting (REHG) is proposed, which makes it possible to
achieve quadriwave lateral shearing interference among
only four diffraction beams without the introduction of
an order selection mask. The REHG-LSI is very compact.
It only consists of a REHG and a CCD. Figure 1 shows the
optical layout of our REHG-LSI for collimated beam
wavefront testing, where the REHG is a grating with both
amplitude and phase modulation approximate to the
ideally calculated quadriwave grating. Once the beam
under test hits the REHG, it will be diffracted into only
four beams on the angle bisectors between the x axis and
the y axis. Finally, these beams will reach the imaging
plane and form a quadriwave lateral shearing interfero-
gram in their overlapped region on the CCD. The spacing
from the grating to the CCD is determined to make sure
that the interferogram completely fills the field of view.

In detail, the REHG consists of a phase chessboard and
a randomly encoded binary amplitude grating, as is
shown in Fig. 2. The phase chessboard is a transparent
substrate on which the phase modulation of 0 and z ar-
range alternatively, and the binary amplitude grating sim-
ulates the transmittance of the ideal quadriwave grating
with tiny encoded pixels of mask. The grating pitch of the
binary amplitude grating is a half of the pitch of the phase
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Fig. 2. Schematic diagram of the REHG structure.

chessboard. Due to the combined effect of the phase
chessboard and the binary amplitude grating, the beam
passing through the REHG will only be diffracted into
the £1 orders in two orthogonal directions. And there
is no need to employ an order selection mask, which,
as a result, not only makes the system more compact
and portable, but also enlarges the testing range of wave-
front distortion compared to the CGLSIL

The REHG is based on the ideally calculated quadri-
wave grating that only has the +1 diffraction orders in
two orthogonal directions. Assume that the transmit-
tance of this ideal grating is #;4(, ¥), its Fourier transform
Tiq(u,v), which also represents the Fraunhofer diffrac-
tion when a collimated beam is incident on this grating,
should contains the following orders [8]:

Tiq(u,v) = 5(u — ug, v — vg) + (U — ug, v + Vp)
+ 8(u + g, v = vy) + S(u + ug, v +vy), (1)

where u, v are, respectively, the spatial frequencies in the
x and y directions, and u,, v, represent the peaks of the
41 orders. The transmittance t,4(x, ) can be obtained by
performing inverse Fourier transform of Eq. (1),

tiq(x, y) = cos(2ruyx) cos(2rvyy). 2

In general, the peak frequencies u, and v, in the x and
y directions are the same. And according to the definition
of the period or pitch of grating, the pitch d of the ideal
quadriwave grating is

d=—=—. ®3)

Substituting Eq. (3) into Eq. (2), the transmittance of the
ideal grating can be expressed as

B 2rx 2my
liq(x,y) = cos (7) cos (7) . 4

The cosine function here ranges from -1 to 1, so does the
transmittance. As the negative transmittance cannot be
obtained from a simple amplitude grating, Eq. (4) is de-
composed into its signal multiplied by its absolute value:

tia(x, y) = sgn(tiq(x, v)) - [ta(x, y)|. )

From this derivation, the signal distribution sgn(t;q(x, ¥))
can be obtained from a phase chessboard with 0 and =
phase modulation. Therefore, the phase distribution
can be described as

Pphase(@.Y) =7 - [rect(%c) % comb (g)]
X |:rect (%Ty) * comb (%)] (6)

For the amplitude distribution, conventional methods
of making cosine amplitude grating would employ holog-
raphy or interferometry to obtain cosine intensity distri-
bution. However, the ideally calculated amplitude
transmittance here does not fully fit the cosine distribu-
tion, but complies with the absolute value of the cosine

distribution, that is,
cos 2w cos 2y
d d

To obtain such intensity distribution is difficult for con-
ventional approaches. Therefore, a randomly encoded
binary amplitude grating is proposed based on the quan-
tization of the radiant flux on the ideal quadriwave gra-
ting. The designing process of this binary amplitude
grating is made up of three steps, which are grid division,
quantization, and randomly encoding.

In the beginning, the amplitude transmittance of the
ideally calculated quadriwave grating is divided equally
into N x N grids, and each grid will be further subdivided
into M x M square pixels. As is shown in Fig. 3(a), the
transmittance of the pixel (7,7) can be expressed as

cos 27 cos 27y
d d

i.j €[1,N x MnZ. (8)

tamp (x’ Z/) = . (7)

tamp(xiv yj) =

)

150

-100 0 100
um

Fig. 3. Flowchart of the randomly encoding method based on
the quantization of radiant flux for REHG designing, (a) the am-
plitude transmittance of the ideal quadriwave grating, (b) quan-
tizing the radiant flux in each grid and randomly encoding the
value of the pixels by the corresponding quantization level of
the grid when M = 3, (c) the binary transmittance distribution
in one period, (d) the binary transmittance distribution in the
area from —150 to 150 pm on the REHG whose pitch is 100 pm.



Next, the step of quantization is to convert the total
radiant flux in each grid into different quantization levels.
Assume that the radiant flux fully crossing a single pixel
is @, then the total radiant flux in an arbitrary grid can be
obtained as

M M
(I)(g‘”) = q)() Z Z tamp (xMﬁ—M-‘rP’ qu—M+q)? (9)
p=1q=1

where (&,7) is the grid coordinate. Once the radiant flux
in each grid on the ideal grating is obtained, the total
number of the quantization levels should be determined
afterward. As the pixel on the binary amplitude grating
we are designing can only have two values, 1 and 0,
which imply the transmittance of the current pixel, 1
means the pixel is transparent, while 0 means the light
cannot pass through. Then all the possibilities of the total
radiant flux in one grid will have M2 + 1 different cases
from 0 to M2. As aresult, the radiant flux in Eq. (9) should
also be uniformly quantized at M? + 1 quantization lev-
els, that is,

OEN =Dy, (k-1/2)A<DED < (k+1/2)A,  (10)
where k = 0,1, ..., M?, and A is the quantization step be-
tween two adjacent levels, which is exactly ®,. As the
radiant flux of the pixel valued 1 is also ®,, the quantiza-
tion level k actually stands for the number of the pixels
whose value is 1 in one grid. Figure 3(b) shows that in
Grid (5,5) and Grid (8,11), there should be, respectively,
4 pixels and 8 pixels assigned 1 when M = 3, where the
pixels assigned 1 are white, while the pixels assigned 0
are black.

Every pixel on the binary amplitude grating will then
be encoded with 1 and 0 in Fig. 3(c). It should be noted
that the number of the pixels assigned 1 in each grid
should be fixed to the quantization level k, but the pattern
of these pixels should be random, and the purpose of
employing random pattern is to avoid introducing extra
diffraction orders due to the periodicity of local struc-
ture. Utilizing this randomly encoding process to all
the pixels in each grid, the final transmittance distribu-
tion of the binary amplitude grating can be obtained in
Fig. 3(d), where N = 100 and M = 3.

Combining this amplitude grating with a phase chess-
board, a mathematic model of the amplitude and phase
modulation of a REHG is built. Then the normalized
intensity of the Fraunhofer diffraction orders can be
calculated out by fast Fourier transform (FFT). The
comparison of the normalized intensity of Fraunhofer dif-
fraction orders between different gratings, which are, re-
spectively, the ideally calculated quadriwave grating, the
phase chessboard, the MHM, and the REHG, is shown in
Fig. 4. It is obvious that the MHM suppresses several or-
ders like +3 and 49 on the basis of a phase chessboard,
but the REHG successfully eliminates all the other orders
except the only +1 orders, which is very similar to the
ideal quadriwave grating. One of the few differences
of their diffractions in Fig. 4 is that the Fraunhofer
diffraction of the REHG contains a base intensity every-
where like the white noise, owing to the randomly encod-
ing process. But this base intensity, which is only 0.015
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Fig. 4. Normalized intensity of Fraunhofer diffraction orders
with different gratings, (a) the ideally calculated quadriwave
grating, (b) the phase chessboard, (c) the MHM, (d) the REHG.

compared to the +1 orders, is so weak that it can be
neglected.

In our simulation, the theory of Fresnel diffraction is
introduced [6] and an Nvidia GTX780 graphics card with
the technology of CUDA, which can reduce our comput-
ing time from one day to nearly 10 seconds and enlarge
the simulation scale to a practical size of millimeters, is
employed. Thus it is possible for us to simulate the inter-
ference patterns of arbitrary wavefronts passing through
different gratings. Figure 5 shows the change of interfero-
gram when the image plane is set at 13.5, 17, 20.5, 24, and
27.5 mm away from the phase chessboard, the MHM,
and the REHG. Due to the interaction between different
diffraction orders, the interference patterns obtained by
the phase chessboard and the MHM both vary with the
distance change periodically. However, the interfero-
gram obtained by the REHG is more stable as the imaging
distance changes, and all the distance is suitable for
quadriwave lateral shearing interference. As the imaging
distance monotonously changes with the shear ratio, the
selection of the shear ratio with REHG is also more flex-
ible. In fact, these features imply the strong adaptability
of the REHG-LSI. Users just need to set a REHG and a
CCD anywhere convenient in the optical path, and the
quadriwave interferogram will be easily obtained.

To validate the precision of our REHG-LSI, a REHG
whose pitch is 240 pm is employed to test the wavefront
distortion of an ¢5 mm optical flat in comparison with
a ZYGO GPI interferometer. The REHG is 6.6 mm x
6.6 mm in size, the grid number N = 1100, and the sub-
division number M = 3, which means that the pixel size
on the grating is set to 2 pym. The picture of the actual
REHG is shown in Fig. 6. The phase chessboard of the

Fig. 5. Change of interferograms when observed at 13.5, 17,
20.5, 24, and 27.5 mm with the grating of (a;)—(as) the phase
chessboard, (b;)-(bs) the MHM, and (c;)-(c;) the REHG.
Media 1, 2, and 3 show the detailed variation with these three
gratings, respectively.
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Fig. 6. Actual REHG mounted on the precision linear stages.
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Fig. 7. Comparative experiment results with a ZYGO GPL
(a) the only four diffractions observed in the far field,
(b) the interferogram of the collimated beam, (c) the interfero-
gram of the collimated beam passing through the optical flat,
(d) the wavefront distortion of the optical flat retrieved by
the REHG-LS], (e) the testing result of the same optical flat with
a ZYGO GPL

REHG is made by reactive ion etching (RIE) on the fused
silica substrate, while the randomly encoded binary am-
plitude grating is fabricated by electron beam lithography
(EBL) on the chrome mask.

At the beginning of the experiment, we let the beam
from a collimator directly pass through the REHG, and
only four diffraction beam spots are observed in the
far field as in Fig. 7(a). The interferogram of the collima-
tor is obtained for system error calibration in Fig. 7(b),
and the coating wavelength of this collimator is 632.8 nm.
Then the interferogram of the collimated beam going
through the optical flat is obtained in Fig. 7(c). As the
simulation above also suggests, these interferograms
keep very stable with nice repeatability during the whole
experiment and are flexible of selecting different shear
ratios at different imaging distances. In the data process-
ing procedure, the FFT method [9] is employed at first to
extract the shearing wavefronts in two orthogonal direc-
tions from the interferogram obtained by the REHG. And
with the help of differential Zernike polynomial fitting
method [10,11], the wavefront under test can be further
retrieved, as is shown in Fig. 7(d), whose peak-to-valley
(PTV) is 0.0341 and root-mean-square (RMS) is 0.0074.
Figure 7(e) shows the result of the same optical flat with
a ZYGO GPI interferometer. The PTV is 0.0304, and the
RMS is 0.0064. In this comparison with the ZYGO GPI,

the REHG-LSI achieves the PTV error of 0.0044 and
the RMS error of 0.0014, which is highly precise.

In conclusion, a compact QWLSI with both strong
adaptability and high precision based on an REHG is pro-
posed. By performing the inverse Fourier transform of
the desired 41 Fraunhofer diffraction orders, the ampli-
tude and phase distributions of the ideally calculated
quadriwave grating can be obtained. Then a phase chess-
board is introduced to generate the same phase distribu-
tion, while the amplitude distribution can be achieved
using randomly encoding method. In this method, the
ideally calculated amplitude distribution is first divided
into discrete grids. And the total radiant flux in each grid
needs to be quantized in several quantization levels. A
binary amplitude grating is then generated by encoding
the pixels in the grids with 0 and 1 so that the total radiant
flux in each grid on this binary amplitude grating approxi-
mate to the flux in the corresponding grid on the ideal
quadriwave grating. In addition, random pattern is em-
ployed in the encoding process to avoid introducing
extra diffraction orders. The Faunhofer diffraction or-
ders of the REHG are very similar to the diffractions
of the ideal quadriwave grating, which only contain
the +1 orders, thus no order selection mask is ever
needed. The simulations and the experiments show that
the REHG-LSI exhibits strong adaptability, nice repeat-
ability, and high precision. As the REHG-LSI is also very
compact and portable, it can be employed in many fields
like optics fabrication and high precision wavefront diag-
nosis in situ.
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