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We propose a simple and robust polynomial-based phase-fitting (PPF) technique for single interferogram demodu-
lation. Based on the smoothness assumption, the method employs a set of Zernike polynomials (ZPs) to fit the phase
and estimates the expansion coefficients using a global optimization algorithm, i.e., differential evolution. The fit-
ting order of the ZPs and the bounds of the coefficients can be intuitively determined according to the shape and
number of fringes of the interferogram. Different from classical methods that need predefined scanning paths to
guide the phase estimator, the PPF demodulates an interferogram globally and is insensitive to local defects, which
allows it to deal with very noisy interferograms. Moreover, as the PPF gives the reconstructed phase by use of the
ZPs, no further phase-unwrapping or wavefront-fitting procedures are needed. Experimental results have demon-
strated the robustness and effectiveness of the method. © 2011 Optical Society of America
OCIS codes: 100.2650, 100.5070, 120.3180, 120.5050.

Phase extraction from a single interferogram is important
for successful applications of optical interferometry to
the measurement of a wide range of physical quantities
[1], which, however, is a difficult task. In the past few
years, many algorithms have been proposed to solve this
problem, such as regularized phase tracing (RPT) [2–4],
spiral phase quadrature transform [5], and frequency-
guided sequential demodulation [6]. In this Letter, we
present a simple and robust polynomial-based phase-
fitting (PPF) technique that is capable of demodulating
single open- or closed-fringe interferograms.
Generally, a fringe pattern Iðx; yÞ can be formulated as

Iðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½ϕðx; yÞ� þ nðx; yÞ; ð1Þ

where aðx; yÞ and bðx; yÞ are the background and mod-
ulation terms, respectively, ϕðx; yÞ is the phase to be
recovered, and nðx; yÞ is the additional noise. After
normalization [7], Eq. (1) may be simplified as

Inðx; yÞ ¼ cos½ϕðx; yÞ�; ð2Þ

where Inðx; yÞ is the normalized intensity. Assuming that
the phase ϕðx; yÞ to be recovered is continuous, we may
find an approximation function ~ϕðx; yÞ of it, which can be
written as a linear combination of N terms of indepen-
dent polynomials up to an order n; that is,

ϕðx; yÞ ≅ ~ϕðx; yÞ ¼ ~ϕðc; x; yÞ ¼
XN
i¼1

ciψ iðx; yÞ; ð3Þ

where c are the expansion coefficients of the basis func-
tions ψ iðx; yÞwhose maximum order is no greater than n.
Since the Zernike polynomials (ZPs) [8] are related to
classical aberrations in optics, we choose them against
many others, such as the power polynomials and the
Chebyshev polynomials. Note that, as the ZPs are defined
on a unit disk, the pupil of the interferogram is restricted
to be circular. When written in polar coordinates, the
nonnormalized ZPs are given by

ψeveni ¼ Rm
n ðρÞ cosmθ

ψoddi ¼ Rm
n ðρÞ sinmθ

�
m ≠ 0

ψ i ¼ Rm
n ðρÞ m ¼ 0

)
; ð4Þ

where i is a mode ordering number and

Rm
n ðρÞ ¼

Xðn−mÞ=2

s¼0

ð−1Þsðn − sÞ!ρn−2s
s!½ðnþmÞ=2 − s�!½ðn −mÞ=2 − s�! ; ð5Þ

where the indices n and m are radial degree and the
azimuthal frequency, respectively, and satisfy m ≤ n,
n − jmj ¼ even. The relation between N and n is
N ¼ ðnþ 1Þðnþ 2Þ=2. By using Eqs. (2) and (3), we get

Inðx; yÞ ≅ cos½~ϕðc; x; yÞ�: ð6Þ
To estimate the expansion coefficients c, we should try

to minimize the cost function:

f ðcÞ ¼
X

ðx;yÞ∈L

ðfInðx; yÞ − cos½~ϕðc; x; yÞ�g2

þ λI2nðx; yÞ½1 − γnðcÞ�Þ; ð7Þ

where L is a two-dimensional aperture, λ is a constraint
parameter, and γn is a normalized correlation coefficient
that measures the similarity between the estimated inter-
ferogram and the real one, which is defined as

γnðcÞ ¼

� P
ðx;yÞ∈L

Inðx; yÞ cos½~ϕðc; x; yÞ�
�

2

� P
ðx;yÞ∈L

I2nðx; yÞ
�� P

ðx;yÞ∈L
cos2½~ϕðc; x; yÞ�

� : ð8Þ

To demodulate the fringe pattern in Eq. (2), we use a
differential evolution (DE) algorithm [9] to find the global
minimum of the multimodal cost function.

The DE algorithm, which is a powerful population-
based stochastic search technique for multidimensional
optimization, works with a population of N × NP
dimensional parameter vectors (i.e., individuals) CG

j ¼
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½cG1;j ; cG2;j;…; cGN;j�T , j ¼ 1; 2;…; NP and aims at evolving it
toward the global minimum iteratively by three steps, i.e.,
the mutation, the crossover, and the selection. Defining
the upper and lower bounds of the search ranges as
UB ¼ ½c1max; c2max;…; cNmax�T and LB ¼ ½c1min; c2min;…;
cNmin�T , the original population can be initialized by

c0i;j ¼ cimin þ randð0; 1Þ × ðcimax − ciminÞ; ð9Þ

where i ¼ 1; 2;…; N , c0i;j is the ith parameter in the jth in-
dividual at the zeroth generation and randð0; 1Þ represents
a uniformly distributed random variable within ½0; 1�.
After the initialization, we use a mutation strategy [9],

i.e., DE=rand=1=bin to yield a mutant vector VG
j ¼

½vG1;j ; vG2;j ;…; vGN;j�T with respect to CG
j according to

VG
j ¼ CG

r1 þ FðCG
r2 − CG

r3Þ; ð10Þ

where r1, r2, r3 ∈ ½1; 2;…; NP� are three random integer
indices different from the running index j and satisfy
r1 ≠ r2 ≠ r3, and F ∈ ½0; 2� is a factor that controls the
amplification of the differential variation (CG

r2 − CG
r3).

Then we generate a trial vector UG
j ¼ ½uG

1;j ; u
G
2;j ;…;

uG
N;j�T by the crossover of CG

j and VG
j according to

uG
i;j ¼

�
vGi;j; if randið0; 1Þ ≤ CR or i ¼ irand
xGi;j; otherwise

; ð11Þ

where CR is a user-defined crossover constant within the
range ½0; 1�, randið0; 1Þ is a random number for the ith
parameter, and irand is a uniformly distributed random
integer within the range ½1; N �. Here, if the values of UG

j

exceed the corresponding bounds, we may randomly
reinitialize them to keep their values within the bounds.
Finally, a greedy criterion that is described as

CGþ1
j ¼

�
UG

j ; if f ðUG
j Þ ≤ f ðCG

j Þ
CG

j ; otherwise
; ð12Þ

can be used to decide whether the trial vector UG
j should

become a member of the generation Gþ 1.
Repeat the three steps above until the user-defined ter-

mination criteria are satisfied.
Once the expansion coefficients c are estimated by the

DE, they may be substituted back into Eq. (3) to yield an
estimate of the true phase.
In the PPF system, two factors, that is, the fitting order

n and the bounds of the expansion coefficients c are cri-
tical to the success and the convergence of the demodu-
lation. For a given interferogram, the fitting order n can
be determined according to the complexity of the shape
of the interferogram as well as the Seidel aberrations (see
[1] for details) in it. For example, if an interferogram has
some dominant aberrations, the fitting order n should not
be smaller than the orders of ZPs that contain these com-
ponents. In the experiments presented, the values of n
we used ranged from 2 to 8.
In addition, the bounds of the expansion coefficients c

can be determined according to the number of fringes in
the entire or partial interferogram. Specifically, if an in-

terferogram has p fringes, the bounds can be obtained by
simply setting cimax ¼ −cimin ¼ pπ because the values of
the nonnormalized ZPs [Eq. (4)] are all within the range
½−1; 1� {i.e., ~ϕðc; x; yÞ ∈ ½−1; 1�pπ}. The rule has a universal
significance and can be applied to all situations. How-
ever, we may practically optimize the bounds further
due to the following two facts: (1) the phase is often gov-
erned by some classical aberrations that are related to
the ZPs and (2) the coefficients gradually become smaller
with the increase of the order of the ZPs. Therefore, the
bounds can be written in a more practical way; that is,

UB ¼ ½1; α1onesð1; 2Þ;…; αnonesð1; nþ 1Þ�Tπ;
LB ¼ −½1; 0; α1; ;…; αnonesð1; nþ 1Þ�Tπ; ð13Þ

where 0 ≤ α1; α2;…; αn ≤ p are weight coefficients and
onesð1; nþ 1Þ is a 1 × ðnþ 1Þ unit vector. In this way,
we may choose different values of αn to control the
bounds for different situations. Note that the ranges of
c1 and c2 are set to ½−1; 1�π and ½0; α1�π due to the periodic
and even properties of the cosine function.

For fringe patterns, such as moiré or photoelastic ones,
that probably do not have obvious components related to
the aberrations, it may be difficult to use the rules above
to determine the fitting order and the bounds. This is also
true for interferograms with square apertures when the
Chebyshev or Legendre polynomials are used. In these
cases, we have to empirically try different values of n
and α and choose a better combination. Besides, as the
computation time increases rapidly with the growth of n,
the proposed PPF may be inappropriate to occasions
such as speckle metrology and photoelasticity where
fringe patterns may have high spatial frequency content
or very irregular shapes if no masks are defined.

To verify the performance of the PPF, we tested it
through three experiments, in all of which we used
λ ¼ 1, NP ¼ 10N , CR ¼ 1, and F ¼ 0:5½1þ randð0; 1Þ�
based on a computer with Core 2 Duo CPU of 2:1GHz
main frequency using MATLAB.

We first carried out an experiment to compare the de-
modulation results by the PPF and the RPT. Figures 1(a)
and 1(b) show an experimental interferogram with
128 × 128 pixels and its normalized intensity [7], respec-
tively. We demodulated the fringe pattern by the RPT
with a neighborhood Nxy ¼ 7 and a phase shift α ¼
0:2π rad, as well as the PPF with a fitting order
n ¼ 2, and showed their correspondingly demodulated
phase and their cosine values in Figs. 1(c), 1(e), 1(d),
and 1(f). In the PPF, the weight coefficients of the bounds
are set to α1 ¼ α2 ¼ 7 because the maximum number of
fringes in the interferogram is 7. The normalized similar-
ity γn [Eq. (8)] between Figs. 1(d) and 1(f) and Fig. 1(b)
are 0.419 and 0.680, respectively. The total time used by
the RPT and the PPF is 124 and 29 s, respectively.

Fig. 1. Demodulation results by the RPT and the PPF.
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Figure 2 shows a 128 × 128 pixel real interferogram
[Fig. 2(a)] that was successfully demodulated by the PPF.
Figure 2(b) is the normalized intensity. Figures 2(c), 2(e),
2(g), 2(d), 2(f), and 2(h) are the recovered phase by use of
the 5, 6, and 7 orders of the ZPs, respectively, and their
corresponding cosine values. The calculated γn between
Figs. 2(d), 2(f), and 2(h)and Fig. 2(b) are 0.585, 0.814, and
0.834, respectively. As we can see, the reconstructed
phase in Fig. 2(c) has some edge distortions due to lack of
fit and these distortions almost disappear in Figs. 2(e) and
2(g), which indicates that the fitting ordern should be pre-
ferably larger than 5. Since large tilt and spherical aberra-
tion components [1] are present in the interferogram, the
preassigned bounds are UB ¼ ½1; 11; 11; 5; 5; 5; 5; 5; 5; 5;
11; 11; 5; 5; 5; 3�onesð1; 6Þ; 1�onesð1; 15Þ�Tπ and LB ¼ ½1;
0; 11; 5; 5; 5; 5; 5; 5; 5; 11; 11; 5; 5; 5; 3�onesð1; 6Þ; 1�ones
ð1; 15Þ�Tπ, respectively, which, along with the estimated
coefficients c of the phase in Fig. 2(e), are shown in
Fig. 3(a). Figure 3(b) shows the changes of the best fitness
and the γn for Fig. 2(g). Note that the data given here are
typical from many experiments.
Finally, Fig. 4 shows another interferogram [Fig. 4(a)]

with 256 × 256 pixels that was successfully demodulated
by the PPF. The normalized irradiance is shown in
Fig. 4(b). Figures 4(c), 4(e), 4(g), 4(d), 4(f), and 4(h) are
the recovered phase by use of 6, 7, and 8 orders of the
ZPs, respectively, and their corresponding cosine values.
The corresponding γn are 0.770, 0.848, and 0.861. The
weights of the bounds are set to α1 ¼ 12, α2 ¼ α3 ¼ 10,
α4 ¼ 4, α5 ¼ 2, and α6 ¼ α7 ¼ α8 ¼ 1. The DE used 5042,
11,345, and 28; 975 s to evolve 3302, 4577, and 8359 gen-
erations to search the optimal solutions for the three fit-
ting orders. To see how time consuming the PPF is, we
also sampled Fig. 4(a) by 512 × 512 pixels and repeated
the demodulation process with n ¼ 8. The PPF used
about 36 h to give the best phase map, which is quite a

long time compared with the method by Dalmau-Cedeño
et al. in [10], where the authors claim an inferior demo-
dulation time (about 9 s for a 512 × 512 pixels fringe pat-
tern). The main reasons are that we use a global search
algorithm here and Dalmau-Cedeño et al. take advantage
of fast algorithms widely used for open fringe patterns.
Note that the computation time here can be reasonably
reduced by properly adjusting the parameters, such as n,
UB, LB, NP, F , and CR.

In conclusion, we propose a simple and robust PPF
technique for single interferogram demodulation. As
the fit and the optimization are done in a global sense,
the PPF is a global phase demodulator in nature, which
makes it quite robust to noise (Figs. 1, 2, and 4). It is due
to this nature that the PPFmay give inaccurate results for
phase maps that are not well defined locally, such as de-
fects and discontinuities. For these cases, masks may be
defined to avoid these subregions. The reader must be
aware that, as the ZPs are not orthogonal for apertures
other than a unit disk, the expansion coefficients will be-
come dependent on each other and be affected by the
values of the fitting order n. Although the demodulation
of a complex interferogram using the PPF requires a huge
amount of computation due to the global search, this pro-
blem may be ultimately solved with the developments of
parallel computation and graphics processing units.
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Fig. 2. Demodulation of a real interferogram using the PPF.

Fig. 3. Demodulation results of Fig. 2(g).

Fig. 4. Demodulation of a complex interferogram.
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